关灯
护眼
字体:

第VII部分 论流体的运动及抛射体所遇到的阻力

首页书架加入书签返回目录

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

应下落以获得上升的小圆的速度;且圆柱以这个速度,在下落的时间,画出四倍其自身的长度。但以这个速度沿其自身长度的方向前进的圆柱的阻力,(由引理IV)与小圆的阻力相同,且因此很接近地等于一个力,由它在圆柱画出四倍其自身长度期间,能生成其运动。

    如果圆柱的长度被增加或者减小,它的运动以及时间,在此期间它画出四倍其自身的长度,按照相同的比被增加或者减小;且因此那个力,由它运动增加或者减小,在按相同的比例增大或者减小的时间能被生成或者被除去,不被改变;且因此仍等于圆柱的阻力,因为由引理IV这也保持不变。

    如果圆柱的密度被增大或者减小:它的运动以及力,由这个力运动能在相同的时间被生成或者除去,按照相同的比被增大或者减小。所以,任意一个圆柱的阻力比一个力,由它在圆柱画出四倍其自身长度期间其整个运动能被生成或者除去,很接近地如同介质的密度比圆柱的密度。此即所证 。

    一种流体应被压缩以致成为连续的,它应是连续的且非弹性的,使得所有来源于它的压缩的压力被瞬时地传播,且相等地作用在运动物体的所有部分,阻力不改变。的确,起源于物体的运动的压力,它被用来产生流体的部分的运动,且这产生阻力。但压力,它起源于流体的压缩,无论它多么强,如果被瞬时地传播,它不在连续流体的部分产生运动,对所有的运动不引起改变;且因此既不增大也不减小阻力。无疑流体的作用,它起源于流体的压缩,对于运动物体的尾部不会强于其头部,因此在这一命题中所描述的阻力不会被减小;且对头部的作用不会强于尾部,只要其传播比被压迫的物体的运动无限地迅速。作用无限地迅速且被瞬时地传播,只要流体是连续的且非弹性的。

    系理1 圆柱,它们在无限的连续的介质中沿自身的长度[的方向]均匀地前进,阻力按照一个比,它由来自速度的二次比和直径的二次比以及介质的密度之比的复合而成。

    系理2 如果管道的宽度不被以至无穷地增加,但圆柱在被密闭的静止介质中沿自身的长度[的方向]均匀地前进,且在此期间它的轴与管道的轴重合:圆柱的阻力比一个力,由它其整个运动能在圆柱画出四倍其长度期间被生成或者除去,按照一个比,它由来自EFq 比EFq - PQq 的一次比和EFq 比EFq -PQq 的二次比以及介质的密度比圆柱的密度之比复合而成。

    系理3 对同样的假设,又长度L比圆柱长度的四倍按照一个比,它由来自EFq 比EPq - PQq 的一次比和EFq 比EFq -PQq 的二次比复合而成;则圆柱的阻力比一个力,由它在圆柱画出长度L期间能除去或者生成其整个运动,如同介质的密度比圆柱的密度。

    解释

    在这个命题中我们研究的阻力,它只起源于圆柱的横截部分的大小,忽略了可能起源于运动的倾斜的那部分的阻力。因为正如在命题XXXVI的情形1中,运动的倾斜,容器中的水以它从各个方向汇聚于孔EF,阻碍那些水从孔中流出;同样,在这个命题中,运动的倾斜,水的部分以它受到圆柱前端的压迫,它们退离压力且向各个方向扩散,迟滞它们通过圆柱的前端周围的地方向圆柱末端的迁移,使流体移动一个更大的距离且阻力被增大,且几乎按照一个比,由它从容器中流出的水被减小,亦即近似地按照25比21的二次比。同样,在那个命题的第一种情形中,通过假设在容器中所有围绕瀑布的水被冻结,且其运动为倾斜又无用的水的部分保持不运动,我们使水的部分垂直且极充满地通过孔EF;因此在这个命题中,为能除去运动的倾斜,且水的部分通过以最直接和最快速的退离,能给圆柱最便于移动的通道,使得只起源于横截部分的大小的阻力被保持,且它不能被减小,除非减小圆柱的直径。必须这样想象流体的部分,它们的运动是倾斜的,无用的且产生阻力,它们在圆柱的两端彼此静止,且依附并连结在圆柱上。设ABCD为一个矩形,且AE和BE为以轴AB和一条通径画出的两条抛物线弧,此通径比空间HG,它被下落的圆柱在获得其速度期间画出,如同HG比 AB。又设CF和DF为另两条抛物线弧,它们以轴CD和一条通径画出,它是前一条通径的四倍;且图形围绕轴EF旋转生成一个立体,其中间的部分ABDC是我们正处理的圆柱,又顶端部分ABE和CDF所包含的流体的部分彼此静止且凝结成两个刚性物体,附着在圆柱的两端犹如头和尾。则沿其轴FE的长度[的方向]向着E前进的固体EACFDB的阻力很接近我们在这个命题中所描述的,亦即,它比一个力,由这个力在圆柱以那个均匀连续的运动画出长度4AC期间,圆柱的整个运动或者能被除去或者能被生成,所具有的比与流体的密度比圆柱的密度所具有的比非常接近。且由命题XXXVI系理7,阻力比这个力不可能按照小于2比3的比。

    引理 V

    如果一个圆柱,一个球和一个扁球,它们的宽度相同,并被如此相继放在一根圆柱形管道中,使得它们的轴与管道的轴重合:这些物体相等地阻碍流过管道的水。

    因为管道和圆柱、球以及扁球之间的空间,水从那里通过,是相等的:则水相等地通过相等的空间。

    这是如此来自一个假设:圆柱、球或者扁球上方的所有水被冻结,其流动性对水的非常快速的通道不再需要,正如在命题XXXVI系理VII中我所解释的。

    引理 VI

    对同样的假设,前述物体被流过管道的水相等地推动。

    由引理V和运动的第三定律这是显然的。无论如何水和物体之间彼此相互且相等地作用。

    引理 VII

    如果水在管道中静止,且这些物体以相同的速度沿相反方向穿过管道,它们的阻力彼此相等。

    由上一引理这是显然的,因为它们彼此之间的相对运动保持相同。

    解释

    对所有既凸且圆的物体,其轴与管通的轴重合,情形是相同的。一些偏差可能来源于大的或者小的摩擦;但是在这些引理中,我们假定物体极光滑,且介质没有黏性和摩擦,又流体的部分,由于其偏斜和过多的运动能扰乱、阻碍,且迟滞水从管道流过,彼此静止犹如冻结的冰,并附着在物体的头部和尾部,一如在上一命题的解释中我说明的。因随后我们考虑以给定最大的横截部分画出的圆形物体可能遇到的最小的阻力。

    物体浮在流体中,当它一直向前运动,使流体在它们前面上升,在它们后面下沉,特别地如果它们的形状是钝的;且因此它们比如果头和尾都是尖的物体所受的阻力稍大。又物体在弹性流体中运动,如果它们的头和尾是钝的,流体在它前面的收缩稍大且在它后面扩张稍大;且因此比如果头和尾都是尖的物体所受的阻力稍大。但是我们在这些引理和命题中没有论及弹性流体,而是论及非弹性流体;没有论及浮在流体表面的物体,而论及深深地浸没的物体。且当物体在非弹性流体中的阻力已知,在弹性流体中这个阻力需有些增加,如空气以及在蓄积着的流体的表面,如大海和沼泽。

    命题XXXVIII 定理XXX

    一个球,它在无限且无弹性的一种压缩流体中均匀地前进,其阻力比一个力,由它球在画出其直径的三分之八的时间能除去或者生成其整个运动,很接近地如同流体的密度比球的密度。

    因为球比外接的圆柱如同二比三;且所以那个力,由它圆柱的所有运动在圆柱画出四倍直径的一个长度期间能被除去,球的所有运动在球画出这个长度的三分之二期间被除去,亦即,球自身直径的三分之八。现在圆柱的阻力比这个力,由命题XXXVII,很近似地如同流体的密度比圆柱的或者球的密度,再由引理V,VI,VII,球的阻力等于圆柱的阻力。此即所证 。

    系理1 球在无限压缩的介质中的阻力按照一个比,它由来自速度的二次比及直径的二次比和介质的密度之比复合而成。

    系理2 最大的速度,以它一个球由其相对的重力(vis ponderis)能在一种阻力介质中下落,是相同的球以相同的重量无阻力地下落能获得的,球在其下落中画出一个空间,此空间比球自身的直径的三分之四如同球的密度比流体的密度。因为球在其下落的时间,以在下落中获得的速度,画出一个空间,它比球自身的直径的三分之八,如同球的密度比流体的密度;且生成这个运动的重力比一个力,由这个力在以相同的速度画出球自身的直径的三分之八的时间能生成相同的运动,如同流体的密度比球的密度;且因此由本命题,重力等于阻力,所以不能加速球。

    系理3 给定球的密度和在开始运动时它的速度,以及球在其中运动的静止的压缩流体的密度;由命题XXXV系理VII,在任意时刻球的速度和它的阻力,以及由它画出的空间被给定。

    系理4 一个球在与它自身的密度相同的静止的压缩流体中运动,由同一系理VII,在球画出其直径的二倍之前,它自己的运动已失去一半。

    命题XXXIX 定理XXXI

    一个球,通过被封闭且被压缩在一根圆柱形管道中的流体均匀地向前运动,它的阻力比一个力,由它球在画出其直径的三分之八的时间能生成或者除去其整个运动,很接近地按照一个比,它由来自管道的开口比这个开口对球的最大的圆的一半的超出之比,和管道的开口比这个开口对球的最大的圆的超出的二次比,以及流体的密度比球的密度之比复合而成。

    由命题XXXVII系理2,这是显然的,且证明如同上一命题进行。

    解释

    在以上两个命题中(与在引理V中一样)我假设跑在球前面,且其流动性增大球的阻力的所有的水被冻结。如果所有那些水溶化,阻力有些增加。但在这些命题中阻力增加较小且能被忽略,因为球的凸表面几乎与冰有相同的功能。

    命题XL 问题IX

    一个球,在一极易流动的、压缩的介质中前进,通过现象求它的阻力。

    设A为在真空中球的重量,B为它在阻力介质中的重量,D为球的直径,F为一个空间,它比 D如同球的密度比介质的密度,亦即,如同A比A-B,G为时间,在此期间球以重量B无阻力地下落,画出空间F,且H为速度,它被这个球在其下落中获得。由命题XXXVIII系理2,H是最大的速度,以它球由其重量B能在介质中下降;由命题XXXVIII系理1,球以那个速度H所遇到的阻力,等于它的重量B;球以其他任意速度所遇到的阻力,比重量B按照它的速度比那个最大的速度H的二次比。

    这是起源于流体物质的惰性的阻力。起源于它的部分的弹性,黏性和摩擦的阻力,可如此研究。

    放下球使它以自身的重量B在流体中下降;且P为下落的时间,且它以秒计,如果G以秒计。找到绝对数 (39) (numerus absolutus)N,它对应于对数 ,且设L为数(N+1)/N的对数,则在下落中获得的速度为 H,且画出的高度为[(2PF)/G]-1.3862943611F+4.605170186LF。如果流体足够深,可忽略项4.605170186LF;画出的高度很接近[(2PF)/G]-1.3862943611F。这些由第二卷命题九及其系理是显然的,由假设,球不受其他的阻力,除非它来源于物质的惰性。如果它确定受到其他的阻力,下降将会变慢,且由迟滞可以知道这个阻力的量。

    如是物体在流体中下落的速度和下降能更容易地知道,我编制了下表,其第一列指示下降的时间,第二列显示在下落中获得的速度,最大的速度为100000000,第三列显示在那些时间下落画出的空间,2F为空间,它由物体以最大的速度在时间G画出,且第四列显示以最大的速度在相同的时间画出的空间。在第四列中的数为(2P)/G,并通过减去数1.3862944-4.6051702L,发现在第三列中的数,且为了得到下落画出的空间,这此数必须乘以空间F。此外加上第五列,其中包含一个物体在真空中下落,由其自身的相对重力B画出的空间。

    解释

    为了通过实验研究流体的阻力,我得到了一个正方形的木头容器,内部的长和宽各为一伦敦 呎的九吋,深九又二分之一吋,且我用雨水注满容器;并由蜡包着铅制成球,我记录球下降的时间,球下降的高度为112吋,1立方伦敦 呎的立体包含76罗马磅 (40) (libra Romana)的雨水,这种呎的一吋的立体包含这种磅的 盎司或者 格令;以一吋的直径画出的水球在空气介质中包含132.645格令雨水,或者在真空中包含132.8格令雨水;且任意其它球如同它在真空中的重量对它在水中的重量的超出。

    实验1 一个球,在空气中它的重量为 格令,且在水中为77格令,在四秒钟的时间画出的总高度为112吋。且当实验被重复,球在四秒钟的时间下落相同的路程。

    此球在真空中的重量是 格令,且其重量对在水中球的重量的超出是 格令。因此得出球的直径为0.84224吋。但那个超出比在真空中球的重量,如同水的密度比球的密度,于是如同球的直径的三分之八(即2.24597吋)比空间2F,因此它[2F]为4.4256吋。在1秒钟的时间,球由其自身的总重量 格令下落,在真空中画出 吋;且由77格令的重量下落,在相同的时间,在没有阻力的水中画出95.219吋;则在时间G,它比一秒按

    照空间F或者2.2128吋比95.219吋的二分之一次比,球画出2.218吋,并能获得在水中下降时的最大的速度H。所以时间G为0″.15244。且在这个时间G,球以最大的速度H画出4.4256吋的一个空间2F;因此在四秒的时间画于116.1245吋的一个空间。减去空间1.3862944F或者3.0676吋,则保留113.0569吋的一个空间,它由球在一个很宽的容器中下落,在四秒钟画出。这个空间,由于上述木头容器的狭窄,应按照来自容器的开口比这个开口对球的最大的半圆的超出的二分之一次比和相同的开口比其对球的最大圆的超出的简单比的复合比减小,亦即按照1比0.9914之比减小。这样做之后,得到112.08吋的一个空间,理论上,球在这个木头容器中下落,在四秒的时间应近似地画出这个空间。且由实验它画出112吋。

    实验2 三个相等的球,每个在空气中的重量是 格令且在水中是 格令,相继落下;每一个在水中下落,在十五秒的时间在各自的下落中画出112吋的一个高度。

    由计算得出,在真空中一个球的重量是 格令,这个重量对在水中球的重量的超出是 格令,球的直径为0.81296吋,这个直径的三分之八是2.16789吋,空间2F为2.3217吋;一个空间,它由重 格令的球无阻力地下落在1″的时间画出,是12.808吋;且时间G为0″.301056。所以,球以最大的速度,由这个速度球能以 格令的力在水中下落,在0″.301056的时间画出2.3217吋的一个空间,且在15″的时间画出115.678吋的一个空间。减去1.3862944F或者1.609吋的一个空间,则保留114.069吋的一个空间,因此该球在很宽的容器中下落在相同的时间应画出它。由于我们的容器的狭窄,大约0.895吋的空间应被扣除。且因此保留113.174吋的一个空间,理论上,它由球在这个容器中下落,在15″的时间应很接近地画出。且由实验它画出112吋。差异是感觉不到的。

    实验3 三个相等的球,每个在空气中的重量是121格令,且在水中是1格令,相继落下;且在水中下落,在46″,47″,和50″的时间,画出112吋的高度。

    按照理论,这些球应在大约40″的时间下落。它们的下落得较缓慢是否归之于在缓慢运动中起源于惰性力的阻力比起源于其他原因的阻力的较小的比例;或者是宁可归之于附着于球上的一些小泡,或者蜡由于天气的或者使球落下时手上的热而变稀,或者甚至是在水中称量球时感觉不到的误差,我不能肯定。且因此球在水中的重量应大于一格令,则实验会确实且可信。

    实验4 为了研究流体的阻力,我着手至此描述的实验,这早于我得知在最近的命题中阐述的理论。此后,为检验已发现的理论,我得到了一个内部宽 吋,深十五又三分之一呎深的木头容器。然后我由蜡包着铅制成四个球,每个在空气中重 格令且在水中重 格令。再者,我让这些球落下,并用一架半秒的振动摆测量它们在水中的下落时间。球,当被称量时且在此后的下落中,是冰凉的且冰凉被保持一段时间;因为热使蜡变稀,且由于变稀减小在水中的球的重量,已变稀的蜡由于寒冷不立刻回归到原先的密度。在下落前,它们被完全地浸没在水中,使得它们的下落在开始时不被凸出水的部分的某些重量所加速。且当它们完全浸没并静止时,极细心地让它们下落,由释放它们的手不会接受某个冲击。它们相继下落,在振动 , ,50和51次的时间,画出十五英呎又二吋的高度。但现在的天气比称量球时稍冷,因此在另一天我重复了实验,且球在振动49, ,50和53次的时间下落,第三次做时,球在振动 ,50,51和53次的时间下落。多次重复实验,我得到球大多在振动 和50次的时间下落。当下落较慢时,我怀疑由于它们碰到容器的壁而变缓慢。

    现在按照理论进行计算,得出球在真空中球的重量是 格令,这个重量对在水中球的重量的超出是 格令。球的直径为0.99868吋。此直径的三分之八是2.66315吋。空间2F为2.8066吋。一个空间,它由球以 格令的重量在一秒的时间无阻力地下落画出,是9.88164吋。且时间G为0″.376843。所以球,以最大的速度,由它球能以重 格令的重力在水中下降,在0″.376843的时间画出2.8066吋的一个空间。且在1″的时间画出7.44766吋的一个空间,又在25″或者[摆]振动50次的时间画出186.1915吋的一个空间。减去1.386294F或者1.9454吋的一个空间,则保留184.2461吋的一个空间,它由球在一个很宽的容器中下落,在相同的时间画出。由于我们的容器的狭窄,这个空间按照来自容器的开口比这个开口对球的最大的半圆的超出的二分之一次比,和相同的开口比它对球的最大圆的超出的简单比的复合比减小;则得到181.86吋的一个空间,它很接近球在这个容器中在[摆]振动50次的时间由理论应画出的空间。由实验,球在[摆]振动 或者50次的时间,画出182吋的一个空间。

    实验5 四个球在空气中重 格令且在水中重 格令,它们多次落下,在 ,29, 和30次,且有时在31,32,或者33次振动的时间,画出十五呎又二吋的一个高度。

    由理论它们应在很接近29次振动的时间下落。

    实验6 五个球在空气中重 格令,且在水中重 格令,它们多次落下,在振动15, ,16,17和18次的时间,画出十五呎又二吋的一个高度。

    由理论它们应在很接近15次振动的时间下落。

    实验7 四个球在空气中重 格令,且在水中重 格令,它们多次落下,在[摆]振动 ,30, ,32和33次的时间,画出十五呎又一吋半的一个高度。

    由理论它们应在很接近28次振动的时间下落。

    在研究诸球,它们的重量和大小相同,在下落时为何有的迅速有的迟缓的原因时,我偶然想到,当初始球被放下并开始下落时,那一侧,它碰巧较重并先下降,产生一振动运动,振动围绕它们的中心。因为由于其自身的振动,一个球传递给水的运动比它下降而没有振动时大,且由此振动失去原有的运动的一部分,球应以此运动下降;且根据振动是较大或者较小,受到较大或者较小的迟滞。此外,球总从振动中正下降的那一侧退离,且由于退离靠近容器的壁,并在某些情况撞在壁上。且这种振动在球较重时强烈,且较大的球对水的推动较大。所以,为减小球的振动,我由蜡和铅新做了球,铅嵌在球中靠近其表面的一侧,且我这样放在球,使较重的一侧尽可能在开始下降时的最低点。于是振动变得比以前小很多,且球在不相等性较小的时间下落,正如在以下的实验中。

    实验8 四个球,在空气中重139格令且在水中重 格令,多次落下,在振动不多于52次,不少于50次,且大多在约51次振动的时间下落,画出182吋的一个高度。

    由理论它们应在大约52次振动的时间下落。

    实验9 四个球,在空气中重 格令,且在水中重 格令,多次落下,在振动不少于12次,不多于13次的时间,画出182吋的一个高度。

    由理论这些球应在很接近 次振动的时间下落。

    实验10 四个球,在空气中重384格令且在水中重 格令,多次落下,在 ,18, 和19次振动的时间,画出 吋的一个高度。且当它们在19次振动的时间下落时,我有时听到在到达底部之前它们撞击容器的壁。

    由理论它们应在很接近 次振动的时间下落。

    实验11 三个相等的球,在空气中重48格令且在水中重 ,多次落下,在振动 ,44, ,45和46次,且大多在44和45次的时间,画出很接近 吋的一个高度。

    由理论它们应在大约 次振动的时间下落。

    实验12 三个相等的球,在空气中重141格令且在水中 格令,数次落下,在61,62,63,64和65次振动的时间,画出182吋的一个高度。

    且由理论,它们应在很接近 次振动的时间下落。

    从这些实验,显然,当球缓慢下落,如在第二,第四,第五,第八,第十一和第十二个实验中,下落的时间由理论正确地显示;且当球迅速下落,如在第七,第九和第十个实验中,阻力稍大于按照速度的二次比的阻力。因为球在下落期间有些振动;且这个振动在较轻的球且较慢的下落中,由于运动微弱而迅速停止;但是在轻重且较大的球的下落中,由于运动强烈而持续较久,且不能通过包围着的水检验除非在多次振动之后。而且球,它们愈迅速,它们在后面所受水的压迫愈小;且如果速度持续增大,它们最后会在后面留下是真空的一个空间,除非流体的压力同时增大。但是流体的压力(由命题XXXII和XXXIII)应按照速度的二次比增大,使得阻力按照相同的二次比。因为这不会发生,快速的球后面所受的压迫稍小,且由于这个压力的减小,它们的阻力变得稍大于按照速度的二次比的阻力。

    所以理论与物体在水中的下落相符,剩下我们检验物体在空气中的下落现象。

    实验13 1710年6月,从位于伦敦 城的圣保罗教堂的屋顶,同时落下两个玻璃球,一个充满水银,另一个充满空气;且在下落中它们画出220伦敦 呎的一个高度。一块木板,其一边被悬于铁铰链上,另一边由一个木栓支撑;放在这块板上的两个球同时落下,这通过延伸至地的铁丝拔去木栓,使得木板只倚靠在铁铰链上面而向下旋转,同时一个按秒的振动摆由那条铁丝牵引下落而开始振动。球的直径和重量以及下落的时间显示在下表中。

    但是,观察到的时间应被修正。因为水银球(由伽利略的理论)在四秒钟画出257伦敦 呎,故画出220呎仅需3″.42。所以木板,当木栓被拉下时,比它应当要旋转得要慢,且旋转的缓慢阻碍球在开始时的下降。因为球差不多位于木板的中心,且事实上离木板的[转]轴比离木栓更近。且因此下落的时间被延长大约一秒钟的六十分之十八,所以修正应扣除这些时间,特别对较大的球,因为它们的大小使它们在木板上的时间稍久。这样做了之后,时间,在此期间六个较大的球下落,成为8″.12,7″.42,7″.42,7″.57,8″.12,和7″.42。

    所以,第五个充满空气的球,直径为五吋,重483格令,在8″.12的时间下落,画出220呎的一个高度。[体积]等于这个球的水的重量是16600格令;且[体积]等于它的空气的重量是 格令,或者 格令;且因此在真空中球的重量是 格令,又这个重量比[体积]等于球的空气的重量,如同 比 ,且因此等于2F比球的直径的三分之八,亦即,比 吋。由此得出2F为28呎11吋。球在真空中,以它自身的全部重量 格令下落,在一秒钟的时间画出 吋如上,则以483格令画出185.905吋,且相同的重量483格令也在真空中在57.58″″的时间画出空间F或者14呎 吋,并获得它能在空气中下降的最大的速度。球以这个速度,在8″.12的时间,画出245呎又 吋的一个空间。减去1.3863F或者20呎 吋,则保留225呎5吋。所以,这个空间,由理论应该在8″.12的时间被球下落画出。在实验中它画出220呎的一个空间。误差是感觉不到的。

    对其余充满空气的球应用类似的计算,我编制了下表。

    实验14 1719年7月,德扎尔格 先生重做此类实验,猪的一个膀胱通过凹的木球被制成球壳,湿的膀胱由于充入的空气而膨胀;且在它们干了之后被取出,并从同一座教堂的圆顶阁上的一个更高的位置,即从272呎的高度落下;且在同一时刻也下落一个铅球,它的重量约为二罗马磅。且在这期间,有人站在此教堂的最高处,在那里球落下,标记下落的整个时间,又有人站在地上标记铅球下落的和膀胱下落的时间之间的差。且时间由按半秒钟振动的摆测定。在那些站在地上的人中,某人有一只每秒振动四次的弹簧时钟;另一个人有另外一台由每秒振动四次的摆巧妙地制成的机械。站在教堂顶部的人中,也有人有一台类似的机械,且这些机械如此制造,使得它们可随意地开始或者停止。又铅球在约四又四分之一秒的时间下落。且上述的差加上这个时间,膀胱下落的整个时间被确定。时间,在此期间,五个膀胱在铅球落地后继续下落,在第一次为 ″, ″, ″, ″,和 ″,且在第二次为 ″, ″,14″,19″,和 ″。加上时间 ″,在此期间铅球下落,则总的时间,在此期间五个膀胱下落,在第一次为19″,17″, ″,22″,和 ″,且在第二次为 ″, ″, ″, ″,和21″。而在教堂顶部所标记的时间,在第一次为 ″, ″, ″, ″,和 ″,且在第二次为19″, ″, ″,24″,和 ″。但膀胱并不总是一直下落,有时飘浮不定,且在下落中来回摆动。则下落时间被这些运动延长和增加,有时为半秒,有时为一整秒。此外,第二个和第四个膀胱在第一次直线下落;且第一个和第三个膀胱在第二次也如此。第五个膀胱是皱的且由于其皱它稍被迟滞。膀胱的直径我从很细的线环绕它们两次测得的周长导出。且在下表中我把理论与实验相比较,假定空气的密度比雨水的密度如同1比860,并计算空间,由理论球在下落中应画出它们。

    所以,我们的理论正确地显示了球在空气中以及在水中运动时几乎所有的阻力,且对等速且等大的球,它与流体的密度成比例。

    在一个解释中,它附属于第六部分,由摆的实验我们证明,相等且等速的球在空气,水,和水银中运动,阻力如同流体的密度。在这里由物体在空气和水中下落的实验,我们更精确地证明了同一事情。因为摆在每次振动中,引起流体的一个运动,它总与摆返回时的运动相反,且由起源于这个运动的阻力,以及线的阻力,摆由线悬挂,使得摆的总的阻力大于由物体下落的实验发现的阻力。因为在那个解释中由摆的实验说明,密度与水相同的一个球,在空气中画出自身半直径的一个长度,应失去其自身运动的 。但由在这个第七部分中阐述且由物体下落的实验证实的理论,假定水的密度比空气的密度如同860比1,相同的球画出同样的长度,仅应失去其自身运动的 。所以,由摆的实验发现的阻力大于(因刚才所描述的原因)由球下落的实验发现的阻力,且约按照4比3之比。但是,由于在空气,水,和水银中振动的摆的阻力由于类似的原因而被类似地增大,在这些介质中阻力的比例,不但能由摆的实验,而且能由物体下落的实验足够正确地显示。且因此可以断定,物体在静止且极易流动的流体中运动时的阻力,其他情况相同,如同流体的密度。

    由这些如此被确立的,现在有可能很接近地指出在任意流体中被抛射的任意一个球,在一段给定的时间其运动失去的部分。设D为球的直径,且V为运动开始时它的速度,T为时间,在此期间球以速度V在真空中画出一个空间,它比 D的一个空间如同球的密度比流体的密度;又球在那一流体中被抛射,在任意时间t,其速度失去(tV)/(T+t)份,留下(TV)/(T+t)份;且由命题XXXV系理VII,它画出一个空间,这空间比在相同的时间以均匀的速度V在真空中画出的空间,如同数(T+t)/T的对数乘以2.302585093比数t/T。在缓慢的运动中阻力稍小,因为球的形状较以相同的直径画出的一个圆柱的形状稍微更适于运动。在快速的运动中阻力稍大,因为流体的弹性力和压缩力不按照速度的二次比增大。但这里我没有思考此类细节。

    且即使空气,水,水银,和类似的流体,它们的部分通过无限分解,被细化而成为流动性无限的介质;它们对被抛射的球的阻碍并不减小。因为阻力,关于它产生了上述命题,起源于物质的惰性;而物质的惰性是物体的本质且总与物质的量成比例。通过流体的部分的分解,阻力,它起源于部分的黏性和摩擦,确能被减小,但由它的部分的分解,物质的量没有被减小;且物质的量被保持,其惰性力被保持,这里讨论的阻力,总与惰性力成比例。因为这个阻力被减小,在一个空间中的物质的量必须被减小,物体在此空间中运动。且所以天体空间,通过它行星的和彗星的球体在各个方向极自由地持续运动,且所有运动没有可察觉到的减小,全然没有物质性的流体,也许非常稀薄的水汽和穿过那些空间的光束是例外。

    无疑当抛射体在流体中前进时,它们在流体中激起一个运动,且这个运动起源于抛射体前部的流体的压力对其后部的压力的超出,再者按照每种物质的密度的比,它在流动性无限的介质中不能小于它在空气,水和水银中。且压力的这个超出,与自身的量成比例,不仅在流体中激起运动,而且作用于流体上以迟滞其运动;且所以在所有流体中的阻力如同由抛射体在流体中激起的运动,又它在最精致的以太中,按照以太的密度的比,也不能小于它在空气,水和水银中按照这些流体的密度的比。
上一页目录下一章

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”